18 research outputs found

    Self-diffusion in granular gases

    Full text link
    The coefficient of self-diffusion for a homogeneously cooling granular gas changes significantly if the impact-velocity dependence of the restitution coefficient ϵ\epsilon is taken into account. For the case of a constant ϵ\epsilon the particles spread logarithmically slow with time, whereas the velocity dependent coefficient yields a power law time-dependence. The impact of the difference in these time dependences on the properties of a freely cooling granular gas is discussed.Comment: 6 pages, no figure

    Granular gases with impact-velocity dependent restitution coefficient

    No full text
    Abstract. We consider collisional models for granular particles and analyze the conditions under which the restitution coefficient might be a constant. We show that these conditions are not consistent with known collision laws. From the generalization of the Hertz contact law for viscoelastic particles we obtain the coefficient of normal restitution ǫ as a function of the normal component of the impact velocity vimp. Using ǫ(vimp) we describe the time evolution of temperature and of the velocity distribution function of a granular gas in the homogeneous cooling regime, where the particles collide according to the viscoelastic law. We show that for the studied systems the simple scaling hypothesis for the velocity distribution function is violated, i.e. that its evolution is not determined only by the time dependence of the thermal velocity. We observe, that the deviation from the Maxwellian distribution, which we quantify by the value of the second coefficient of the Sonine polynomial expansion of the velocity distribution function, does not depend on time monotonously. At first stage of the evolution it increases on the mean-collision timescale up to a maximum value and then decays to zero at the second stage, on the time scale corresponding to the evolution of the granular gas temperature. For granular gas in the homogeneous cooling regime we also evaluate the time-dependent self-diffusion coefficient of granular particles. We analyze the time dependence of the mean-square displacement and discuss its impact on clustering. Finally, we discuss the problem of the relevant internal time for the systems of interest.

    Quellen und Literatur

    No full text
    corecore